Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase.

نویسندگان

  • R Santamaria
  • G Esposito
  • L Vitagliano
  • V Race
  • I Paglionico
  • L Zancan
  • A Zagari
  • F Salvatore
چکیده

We have identified a novel hereditary fructose intolerance mutation in the aldolase B gene (i.e. liver aldolase) that causes an arginine-to-glutamine substitution at residue 303 (Arg(303)-->Gln). We previously described another mutation (Arg(303)-->Trp) at the same residue. We have expressed the wild-type protein and the two mutated proteins and characterized their kinetic properties. The catalytic efficiency of protein Gln(303) is approx. 1/100 that of the wild-type for substrates fructose 1,6-bisphosphate and fructose 1-phosphate. The Trp(303) enzyme has a catalytic efficiency approx. 1/4800 that of the wild-type for fructose 1,6-bisphosphate; no activity was detected with fructose 1-phosphate. The mutation Arg(303)-->Trp thus substitution impairs enzyme activity more than Arg(303)-->Gln. Three-dimensional models of wild-type, Trp(303) and Gln(303) aldolase B generated by homology-modelling techniques suggest that, because of its larger size, tryptophan exerts a greater deranging effect than glutamine on the enzyme's three-dimensional structure. Our results show that the Arg(303)-->Gln substitution is a novel mutation causing hereditary fructose intolerance and provide a functional demonstration that Arg(303), a conserved residue in all vertebrate aldolases, has a dominant role in substrate binding during enzyme catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of hereditary fructose intolerance in Italy: identification of two novel mutations in the aldolase B gene.

We screened the aldolase B gene in 14 unrelated Italian patients with hereditary fructose intolerance (HFI), and found two novel disease related mutations: a single nucleotide deletion in exon 2 (delta A20) that leads to an early stop codon, and a C-->T transition in exon 8 that substitutes an Arg with a Trp residue at codon 303 (R303W).

متن کامل

ONLINE MUTATION REPORT Molecular analysis of the aldolase B gene in patients with hereditary fructose intolerance from Spain

Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disorder caused by aldolase (fructosediphosphate aldolase, EC 4.1.2.13) B deficiency. The B isoform of aldolase is critical for the metabolism of exogenous fructose by the liver, kidney, and intestine, since it can use fructose-1-phosphate as substrate at physiological concentrations, unlike aldolases A and C. Affected su...

متن کامل

Molecular analysis of the aldolase B gene in patients with hereditary fructose intolerance from Spain.

Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disorder caused by aldolase (fructosediphosphate aldolase, EC 4.1.2.13) B deficiency. The B isoform of aldolase is critical for the metabolism of exogenous fructose by the liver, kidney, and intestine, since it can use fructose-1-phosphate as substrate at physiological concentrations, unlike aldolases A and C. Affected su...

متن کامل

Null alleles of the aldolase B gene in patients with hereditary fructose intolerance.

We report three new mutations in the gene for aldolase B that are associated with hereditary fructose intolerance (HFI). Two nonsense mutations create opal termination codons: R3op (C-->T, Arg3-->ter, exon 2) was found in homozygous form in four affected members of a large consanguineous Turkish pedigree and R59op (C-->T, Arg59-->ter, exon 3) was found on one allele in a woman of Austrian origi...

متن کامل

Aldolase B mutations in Italian families affected by hereditary fructose intolerance.

Hereditary fructose intolerance (HFI) is an inborn error of metabolism caused by aldolase B deficiency. The aldolase B gene has been cloned and the following mutations causing HFI have been identified: A149P (a G----C transversion in exon 5), A174D (a C----A transversion in exon 5), L288 delta C (a base pair deletion in exon 8), and N334K (a G----C transversion in exon 9). We have investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 350 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2000